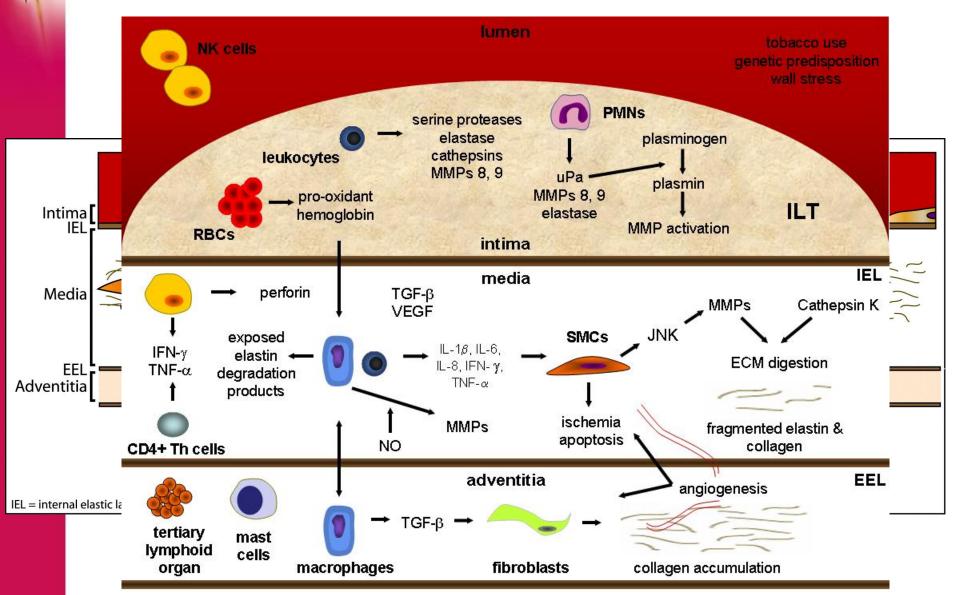

September 15-17 2016 Crowne Plaza Hotel Liège, Belgium

5th International Meeting on Aortic Diseases

New insights into an old problem CHU Liège, APF www.chuliege-imaa.be

Medical Treatment of the AAA in Humans Fiction or Reality?

Gilbert R. Upchurch Jr Muller Professor of Surgery University of Virginia, USA September 15, 2016



Disclosure of Interest

Gilbert R Upchurch Jr: I have the following potential conflicts of interest to report:

- Part owner in Antyllus Inc., a company aimed at developing a medical therapy for aortic aneurysms
- I do not have any potential conflict of interest

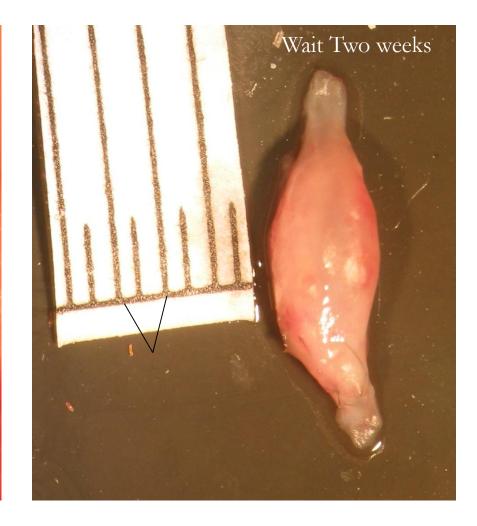
Proposed Mechanisms

English S, Upchurch G, Current Surgical Therapy in Vascular Surgery, 2015

"The fundamental treatment of abdominal aortic aneurysm has changed very little over the past 35 years. This fact is due to our inadequate understanding of the pathogenesis of the disease"

> Timothy Baxter M.D. 1997

OBJECTIVE

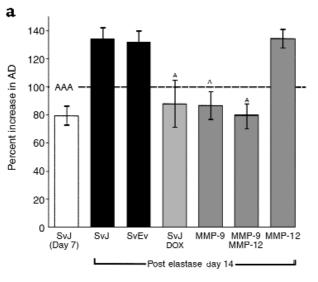

1. To briefly review data, including that learned from animal models, that might give us a clue as to where to look for a cure for human AAAs

Aneurysm Models

- Porcine pancreatic elastase perfusion
- CaCl₂ periaortic application
- Angiotensin II infusion in Apo E KO
- Angiotensin II infusion in LDL receptor KO
- Lysyl Oxidase KO
- MMP-3 or TIMP-1 KO
- Fibrillin-1 Genetic Mutation (Marfan Mouse)
- Topical elastase

Elastase Perfusion Surgery

Insert cannulae through the incision and perfuse with Elastase for 5 min.

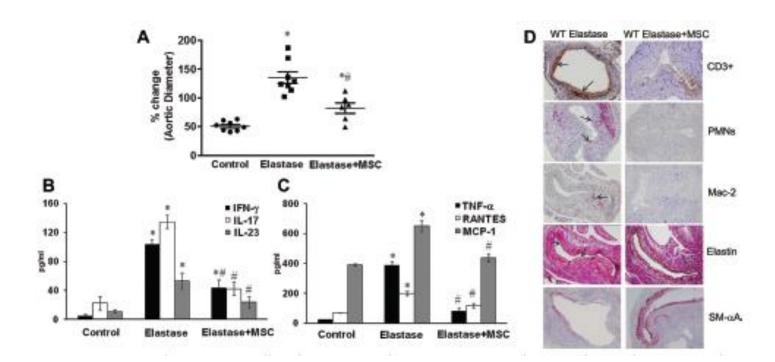


Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms

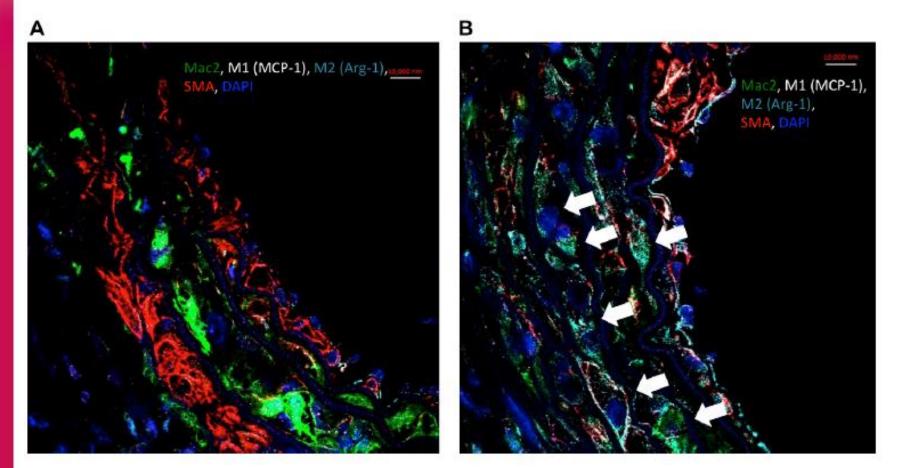
Robert Pyo,¹ Jason K. Lee,¹ J. Michael Shipley,² John A. Curci,¹ Dongli Mao,¹ Scott J. Ziporin,¹ Terri L. Ennis,¹ Steven D. Shapiro,^{2,3,4} Robert M. Senior,^{2,4} and Robert W. Thompson^{1,4,5}

Abdominal aortic aneurysms represent a life-threatening condition characterized by chronic inflammation, destructive remodeling of the extracellular matrix, and increased local expression of matrix metalloproteinases (MMPs). Both 92-kD gelatinase (MMP-9) and macrophage elastase (MMP-12) have been implicated in this disease, but it is not known if either is necessary in aneurysmal degeneration. We show here that transient elastase perfusion of the mouse aorta results in delayed aneurysm development that is temporally associated with transmural mononuclear inflammation, increased local production of several elastolytic MMPs, and progressive destruction of the elastic lamellae. Elastaseinduced aneurysmal degeneration was suppressed by treatment with a nonselective MMP inhibitor (doxycycline) and by targeted gene disruption of MMP-9, but not by isolated deficiency of MMP-12. Bone marrow transplantation from wild-type mice prevented the aneurysm-resistant phenotype in MMP-9-deficient animals, and wild-type mice acquired aneurysm resistance after transplantation from MMP-9-deficient donors. These results demonstrate that inflammatory cell expression of MMP-9 plays a critical role in an experimental model of aortic aneurysm disease, suggesting that therapeutic strategies targeting MMP-9 may limit the growth of small abdominal aortic aneurysms.

J. Clin. Invest. 105:1641-1649 (2000).



Experimental Abdominal Aortic Aneurysm Formation Is Mediated by IL-17 and Attenuated by Mesenchymal Stem Cell Treatment


Ashish K. Sharma, Guanyi Lu, Andrea Jester, William F. Johnston, Yunge Zhao, Vanessa A. Hajzus, M. Reza Saadatzadeh, Gang Su, Castigliano M. Bhamidipati, Gaurav S. Mehta, Irving L. Kron, Victor E. Laubach, Michael P. Murphy, Gorav Ailawadi and Gilbert R. Upchurch, Jr

Circulation. 2012;126:S38-S45 doi: 10.1161/CIRCULATIONAHA.111.083451 Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2012 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

The FASEB Journal article fj.201600144RR. Published online September 12, 2016.

FASEB JOURNAL • RESEARCH • www.fasebj.org

RESOLUTION, RATHER THAN CREATION, OF INFLAMMATION MAY BE IMPORTANT

SUMMARY (1)

Using models and human tissue/ serum, we have identified a number of targets for directed medical therapy for a cure

OBJECTIVE

2. To summarize ongoing trials in humans of potential medical therapies to inhibit AAA growth.

Medical Management of Small Abdominal Aortic Aneurysms B. Timothy Baxter, Michael C. Terrin and Ronald L. Dalman

Circulation. 2008;117:1883-1889 doi: 10.1161/CIRCULATIONAHA.107.735274 Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2008 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

Intervention	Reference(s)	Bflect on AAA Growth	Level of Evidence	Class of Recommendation
Propranolol	46, 69	No inhibition	A	
Macrolides	60	Inhibition	в	8
Tetracycline*	67	Inhibition	в	8
Statins	38, 39	Inhibition	В	∎b
ACE Inhibitors	27, 39, 52, 53	No inhibition	B and C	∎b
AR blockers	48, 50	Animai data	С	∎b

Table. Results of Interventions on AAA Growth

"Inhibition at 6 and 12 months after 3 months of treatment.

Medical Therapy of Thoracic Aortic Aneurysms : Are We There Yet?

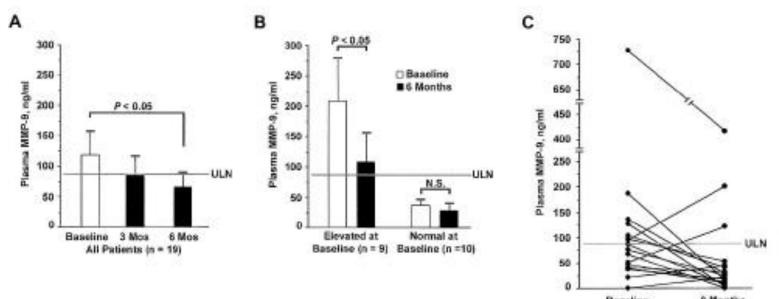

Authors	Study Design	Intervention	Patients, n	Findings Propranolol caused significantly reduced aortic root dilatation	
Shores et al ⁵⁹	Marfan syndrome; randomized, prospective study; ≈10-y mean follow-up	Propranolol	32 Treated, 38 control subjects		
Gadowski et al ⁵⁷	Infrarenal AAA; observational, prospective study; 43-mo mean follow-up	β -blocker	38 Treated, 83 control subjects	Patients with large aneurysms on β-blockers had significantly lower AAA expansion rate	
Leach et al ⁵⁸	AAA; observational, retrospective study; 34-mo mean follow-up	β -blocker	12 on β-blocker, 15 not on β-blocker	Patients on β -blocker had significantly lower AAA expansion rate	
Propranolol Aneurysm Trial Investigators ⁶¹	AAA; prospective, randomized, double-blind study; 2.5-y mean follow-up	Propranolol	276 on propranolol, 272 on placebo	Propranolol did not significantly affect small AAA growth; high discontinuatio rate of propranolol	
Lindholt et al ⁶⁰	AAA; randomized, controlled study; 2-y follow-up	Propranolol	54 Asymptomatic patients	Increased mortality in propranolol group; only 22% could be treated	
Baxter et al ⁶⁶	AAA; prospective, observational study; 6-mo phase II study	Doxycycline	36 Patients	Doxycycline was safe and caused MMP-9 level decrease	
Mosorin et al ⁶⁷	AAA; randomized, placebo controlled, double-blind study; 18-mo follow-up	Doxycycline	17 on doxycycline, 15 on placebo	Aneurysm expansion rate was significantly lower in the doxycycline group	
Vammen et al ⁶⁸	AAA; randomized, double-blind study; 1.5-y mean follow-up	Roxithromycin	43 on roxithromycin, 49 on placebo	4 wk of therapy reduced AAA expansion rate	
Sweeting et al ⁷⁵	AAA; prospective, observational study; 1.9-y mean follow-up	ACEI	169 on ACEI, 1532 not on ACEI	Patients on ACEI had a faster AAA growth rate than patients not on ACEI	
Ferguson et al ⁷⁰	AAA; observational, prospective study; 5-y median follow-up	Statins	394 on statins, 258 not on statins	Statins were not associated with reduced AAA growth rate	
Gambarin ⁶²	Marfan syndrome; open-label phase III study	Losartan, nebivolol	291 patients	Ongoing	

Table. Clinical Studies of Medical Therapy for Aortic Aneurysms

AAA indicates abdominal aortic aneurysm; MMP, matrix metalloproteinase; and ACEI, angiotensin-converting enzyme inhibitor.

Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: Report of a prospective (Phase II) multicenter study

B. Timothy Baxter, MD,^a William H. Pearce, MD,^c Eugene A. Waltke, MD,^b Fred N. Littooy, MD,^d John W. Hallett, Jr, MD,^e K. Craig Kent, MD,ⁱ Gilbert R. Upchurch, Jr, MD,^g
Elliot L. Chaikof, MD, PhD,^h Joseph L. Mills, MD,ⁱ Beverly Fleckten, BS, CCRC,^a
G. Matt Longo, MD,^a Jason K. Lee, MD,^j and Robert W. Thompson, MD,^j Omaha, Neb; Chicago and Maywood, Ill; Rochester, Minn; New York, NY; Ann Arbor, Mich; Atlanta, Ga; Tuscon, Ariz; and St Louis, Mo

Baseline 6 Months

(J Vasc Surg 2002;36:1-12.)

Medical treatment for small abdominal aortic aneurysms (Review)

Rughani G, Robertson L, Clarke M

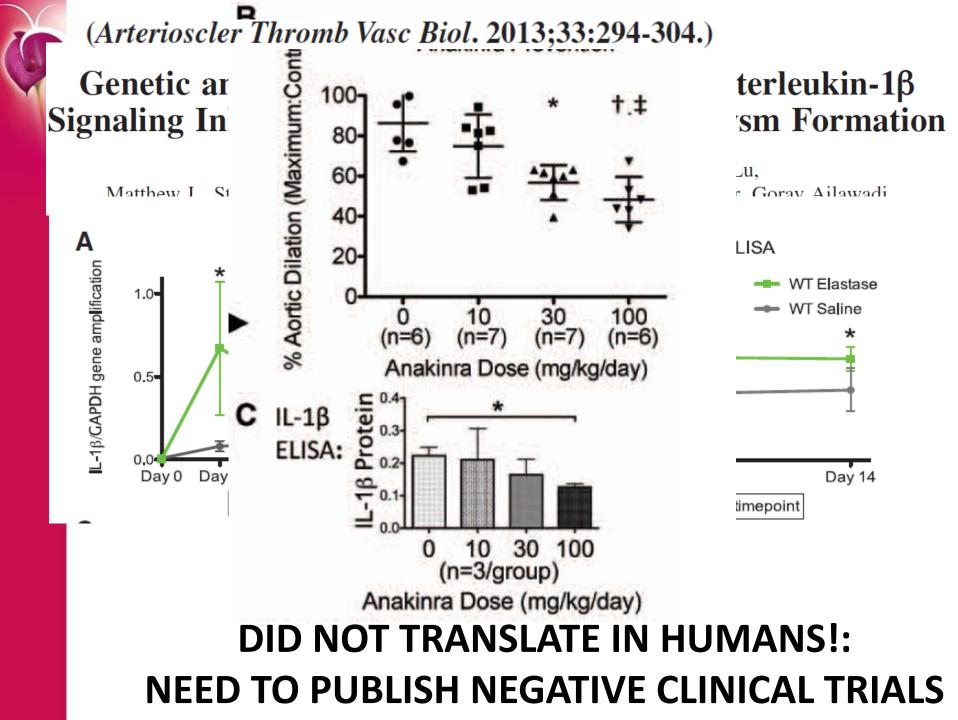
"In general, there is suprisingly little high quality evidence on medical treatment for small AAAs."

- There is limited evidence that antibiotics might have a slight protective effect in retarding expansion rates of small AAAs
- 2. Propanolol poorly tolerated and demonstrated only minimal and non-significant effects.

Statin Therapy

Eur J Vasc Endovasc Surg (2011) xx, 1-5

3


T MODEL

Pharmacological Interventions

Table 1 Cohort studies on pharmacological interventions.

Author		No	Substances studied	Expansion rate, mm/y	P-value
Biancari 19	2002	41	ß-block vs control	1.5 vs 2.2	NS
Brady ⁶	2004	1743	Antihypertensives vs no	2.6 vs 2.7	NS
Ferguson ²⁰	2010	652	Statin vs no statin	OR 1.04	NS
Gadowski ²¹	1994	121	ß-block vs control	3.0 vs 4.4	0.07
Leach ²²	1988	27	ß-block vs control	1.7 vs 4.4	NS
Lindholt ²³	2001	137	ß-block vs control	1.6 vs 2.5	0.01
Lindholt ²⁴	2008	148	ASA vs no ASA	2.5 VS 2.2	NS
Mosorin ²⁵	2008	121	Statings no statin	1.9 vs 2.6	NS.
Schlösser ²⁶	2008	230	cipid lowering vs no	Diff. 1.21	< 0.02
Schouten ²⁷	2006	150	Statin vs no statin	2.0 vs 3.6	< 0.001
Sukhija ²⁸	2006	130	Statin vs control	0 vs 0.4	< 0.001
Sweeting ¹³	2010	1701	ACE ys no	3.33 vs 2.77	0.005
Thompson ²⁹	2010	1231	ACE vs no	Diff 0.28	NS
			Statin vs no	Diff 0.29	NS
Walton ³⁰	1999	78	NSAID vs control	1.5 vs 3.2	< 0.01
Wilminck ³¹	2002	5811	Antihypertensives vs no	0.5 vs 0.8	NS

Mechanism: Likely not cholesterol lowering

SUMMARY (2) Good Medical Therapy in Humans

- Beta blocker
- Statin
- ACE inhibitor

ALL GOOD MEDICAL THERAPY REGARDLESS OF AAA REGRESSION

OBJECTIVE

To consider why we have not found a cure for AAAs yet!
 (Is there hope?).

Abdominal Aortic Aneurysm Expansion Risk Factors and Time Intervals for Surveillance

Anthony R. Brady, MSc; Simon G. Thompson, DSc; F. Gerald R. Fowkes, FRCPE; Roger M. Greenhalgh, MD; Janet T. Powell, MD; on behalf of the UK Small Aneurysm Trial Participants

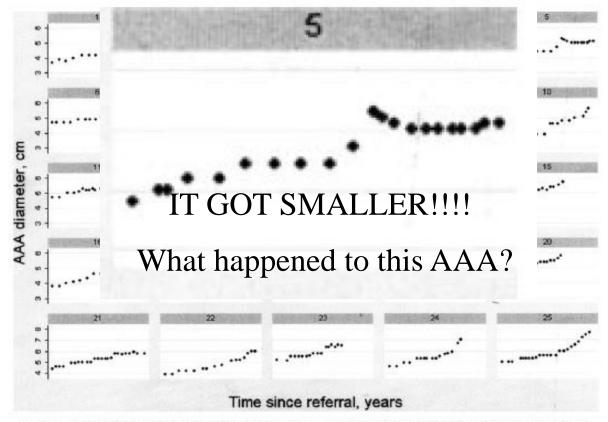
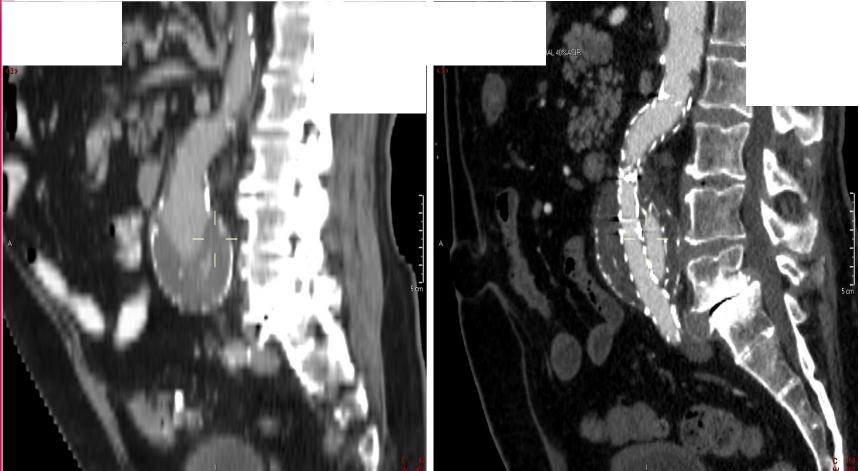
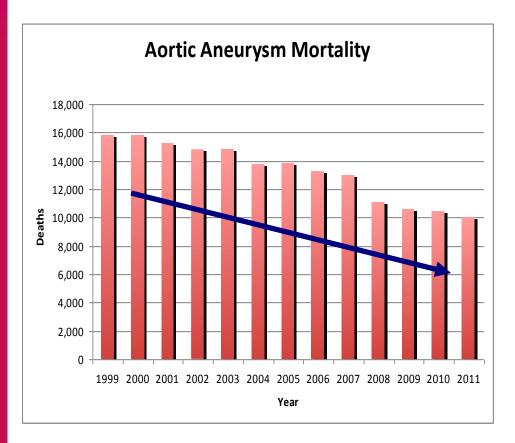



Figure 1. AAA diameter measurements for 25 patients with longest follow-up (the bottom row has a different vertical scale).

(Circulation. 2004;110:16-21.)


EVAR DOCUMENTED NEGATIVE REMODELING IS REAL

 6.2 cm
 5.6 cm

 DECREASED 0.6 CM IN 1 MOS

SUMMARY (3) WE ARE MAKING PROGRESS!!!

Deaths secondary to AAA are decreasing!

CDC, National Vital Stats

BIG QUESTION!

Why have observations not been translated into

aneurysm-specific therapy in humans?

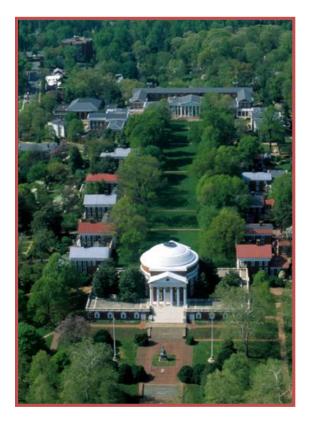
1.Bad Models

2. Too costly to develop clinical trial

(not fiscally worth investing in by companies)

3. Problem not costly enough in lives per year

4. Targeting events that only occur early


5. Need to publish our negative results

Potential Approaches to Developing Targets

1. Promote Extracellular Matrix Regeneration

- Regenerative Therapies
- 2. Decrease Inflammation/ ECM Destruction
 - Need to examine late events
- 3. Improve Delivery of Drugs to Aorta

ALL NOBLE OBJECTIVES FOR FUTURE!

"I was bold in the pursuit of knowledge, never fearing to follow truth and reason to whatever results they led, and bearding every authority which stood in their way."

Thomas Jefferson Must Have Been taking care of Aortic Disease

UVA Aneurysm Team

ANEURYSM PATHOLOGY

Findings include:

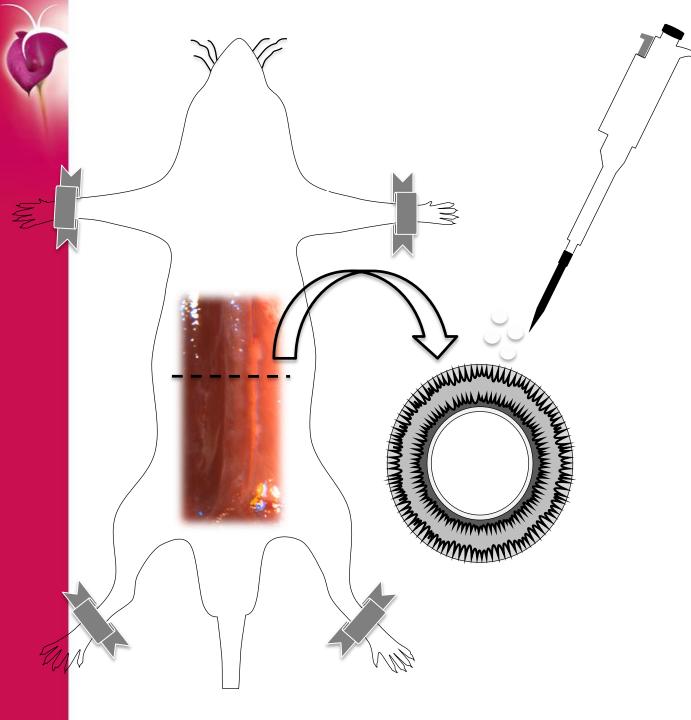
- Inflammatory infiltrate
- Medial elastin & collagen fragmentation
- SMC apoptosis
- Cytokine up-regulation

SURGEONS HAVE PLAYED A CRITICAL ROLE IN UNDERSTANDING PATHOGENESIS

Pearce

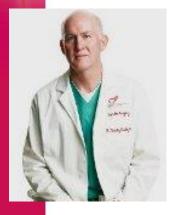
Tilson

Thompson



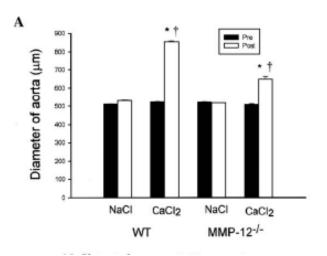
Dalman

Baxter


Aneurysm Models

- Porcine pancreatic elastase perfusion
- CaCl₂ periaortic application
- Angiotensin II infusion in Apo E KO
- Angiotensin II infusion in LDL receptor KO
- Lysyl Oxidase KO
- MMP-3 or TIMP-1 KO
- Fibrillin-1 Genetic Mutation (Marfan Mouse)
- Topical elastase

MMP-12 has a role in abdominal aortic aneurysms in mice


G. Matthew Longo, MD,^a Steven J. Buda, MD,^a Nicola Fiotta, MD,^a Wanfen Xiong, PhD,^a Timothy Griener, MD,^b Steven Shapiro, MD,^e and B. Timothy Baxter, MD,^{a,c,d} Omaha, Neb, and Boston, Mass

Background. Matrix metalloproteinase (MMP)-12 levels are increased in the abdominal aortic aneurysm (AAA), implicating this protease in AAA pathogenesis. The purpose of this study was to assess the role of MMP-12 in aneurysm formation.

Methods. A murine aneurysm model was generated by periaortic application of 0.25 mol/L calcium chloride (CaCl₂) for 15 minutes. Aortic diameters were measured and compared before and 10 weeks after aneurysm induction. Aortic diameter changes for wild type (WT) and MMP-12 knockout (MMP- $12^{-/-}$) mice were determined. MMP-12 production in mouse aorta was analyzed by casein zymography. MMP-2 and MMP-9 expressions were examined by gelatin zymography. Immunohistochemical study was used to measure macrophage infiltration into the aorta.

Results. There is an increase of $63 \pm 5\%$ (mean \pm SEM) in aortic diameters of WT mice after CaCl₂ inductions, while MMP-12^{-/-} mice increased only $26 \pm 14\%$. Connective tissue staining of aortic sections from WT mice showed disruption and fragmentation of medial elastic fibers, while MMP-12^{-/-} mice showed only focal elastic lamellae breakdown. MMP-12 levels in WT mice were significantly increased after CaCl₂ treatment, whereas no MMP-12 was detected in MMP-12^{-/-} mice. There was no difference in the MMP-2 and MMP-9 productions between WT and MMP-12^{-/-} mice. Immunohistochemical analysis demonstrated that infiltrating macrophages in the aorta of MMP-12^{-/-} mice were significantly less than WT controls.

Conclusions. MMP-12 deficiency attenuates aneurysm growth, possibly by decreasing macrophage recruitment. (Surgery 2005;137:457-62.)

