# EVAR in the Aortic Arch

### Tilo Kölbel



University Heart Center University Hospital Eppendorf Hamburg, Germany



#### 2<sup>nd</sup> International Meeting on Aortic Disease

New insights into an old problem CHU Liège, FAD, APF

September 30 & October 1-2 2010, Liège, Belgium

### Aortic Arch Zones



### Ishimaru-classification

### Aortic Arch Zones



Ishimaru-classification

### Specifics of the Aortic Arch

- Branch vessels
  Patency / endoleak
- \* Pulsatility Oversizing / migration
- \* Curvature Conformity / infolding
- \* Access Distance / profile



## Descending Thoracic Aorta

#### Comparative studies

#### n = <mark>5888</mark>

TAA and Dissection

#### TEVAR better

- \* 30d mortality
- \* Paraplegia
- \* Transfusion
- \* Cardiac compl.
- \* Renal function
- \* Pneumonia
- \* Reoperation
- \* Length of stay

#### Endovascular Aortic Repair Versus Open Surgical Repair for Descending Thoracic Aortic Disease

A Systematic Review and Meta-Analysis of Comparative Studies

Davy Cheng, MD,\* Janet Martin, PHARMD, MSc (HTA&M),\* Hani Shennib, MBBS,† Joel Dunning, PHD,‡ Claudio Muneretto, MD,§ Stephan Schueler, PHD, MD,|| Ludwig Von Segesser, MD,¶ Paul Sergeant, MD, PHD,# Marko Turina, MD\*\*

London, Ontario, Canada; Phoenix, Arizona; Middlesbrough and Newcastle upon Tyne, United Kingdom; Brescia, Italy; Lausanne and Zurich, Switzerland; and Leuven, Belgium

| Objectives  | The purpose of this study was to determine whether thoracic endovascular aortic repair (TEVAR) reduces death<br>and morbidity compared with open surgical repair for descending thoracic aortic disease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Background  | The role of TEVAR versus open surgery remains unclear. Metaregression can be used to maximally inform a<br>tion of new technologies by utilizing evidence from existing trials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Methods     | Data from comparative studies of TEVAR versus open repair of the descending aorta were combined through meta-<br>analysis. Metaregression was performed to account for baseline risk factor imbalances, study design, and thoracic<br>pathology. Due to significant heterogeneity, registry data were analyzed separately from comparative studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Results     | Forty-two nonrandomized studies involving 5,888 patients were included (38 comparative studies, 4 registries). Patient characteristics were balanced except for age, as TEVAR patients were usually older than open surgery patients ( $p = 0.001$ ). Registry data suggested overall perioperative complications were reduced. In comparative studies, all-cause mortality at 30 days (odds ratio [OR]: 0.44, 95% confidence interval [CI]: 0.33 to 0.59) and paraplegia (OR: 0.42, 95% CI: 0.28 to 0.63) were reduced for TEVAR versus open surgery. In addition, cardiac complications, transfusions, reoperation for bleeding, renal dysfunction, pneumonia, and length of stay were reduced. There was no significant difference in stroke, myocardial infarction, aortic reintervention, and mortality beyond 1 year. Metaregression to adjust for age imbalance, study design, and pathology did not materially change the results. |  |  |  |
| Conclusions | Current data from nonrandomized studies suggest that TEVAR may reduce early death, paraplegia, renal insuffi-<br>clency, transfusions, reoperation for bleeding, cardiac complications, pneumonia, and length of stay compared<br>with open surgery. Sustained benefits on survival have not been proven. (J Am Coll Cardiol 2010;55:986-1001)<br>© 2010 by the American College of Cardiology Foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ACC Vol 55  | No. 10, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

JACC Vol. 55, No. 10, 2010 March 9, 2010:986-1001

## Descending Thoracic Aorta

10

### 30 day mortality TEVAR vs. OR

|                 | a contraction of the second second second second |                |                |         |
|-----------------|--------------------------------------------------|----------------|----------------|---------|
|                 | Odds<br>ratio                                    | Lower<br>limit | Upper<br>limit | p-Value |
| Demetriades 08  | 0.25                                             | 0.10           | 0.61           | 0.00    |
| Fairman 08      | 0.24                                             | 0.08           | 0.75           | 0.01    |
| Matsumura 08    | 0.32                                             | 0.07           | 1.45           | 0.14    |
| TAG 99-01/03-03 | 0.16                                             | 0.03           | 0.78           | 0.02    |
| Multicenter     | 0.24                                             | 0.13           | 0.44           | 0.00    |
| Aasland 05      | 0.25                                             | 0.03           | 2.29           | 0.22    |
| Akowuah 07      | 0.33                                             | 0.01           | 9.57           | 0.52    |
| Amabile 04      | 0.37                                             | 0.01           | 10.18          | 0.56    |
| Andrassy 06     | 0.58                                             | 0.09           | 3.82           | 0.57    |
| Brandt 04       | 0.13                                             | 0.01           | 1.16           | 0.07    |
| Broux 06        | 0.59                                             | 0.09           | 3.86           | 0.58    |
| Buz 08          | 0.33                                             | 0.08           | 1.41           | 0.13    |
| Chung 08        | 0.67                                             | 0.11           | 3.95           | 0.65    |
| Cook 06         | 0.80                                             | 0.19           | 3.37           | 0.76    |
| Dick 2008       | 0.89                                             | 0.24           | 3.33           | 0.86    |
| Doss 05         | 0.15                                             | 0.02           | 1.36           | 0.09    |
| Ehrlich 98      | 0.25                                             | 0.03           | 2.10           | 0.20    |
| Geisbusch 09    | 0.30                                             | 0.05           | 1.91           | 0.20    |
| Glade 05        | 0.39                                             | 0.07           | 2.05           | 0.27    |
| Kasirajan 03    | 0.25                                             | 0.02           | 3.10           | 0.28    |
| Keiffer 08      | 3.48                                             | 1.14           | 10.62          | 0.03    |
| Kokotsakis 07   | 0.43                                             | 0.02           | 7.63           | 0.56    |
| Kuhne 05        | 0.43                                             | 0.02           | 8.71           | 0.58    |
| Lebl 06         | 0.67                                             | 0.05           | 9.19           | 0.76    |
| McPhee 07       | 1.33                                             | 0.09           | 20.11          | 0.84    |
| Midgely 07      | 0.08                                             | 0.00           | 1.69           | 0.11    |
| Moainie 08      | 1.00                                             | 0.22           | 4.51           | 1.00    |
| Mohan 2008      | 0.38                                             | 0.03           | 4.87           | 0.46    |
| Morishita 04    | 2.00                                             | 0.18           | 22.06          | 0.57    |
| Najibi 02       | 0.16                                             | 0.01           | 4.37           | 0.28    |
| Nienaber 99     | 0.31                                             | 0.01           | 8.31           | 0.48    |
| Ott 04          | 0.32                                             | 0.01           | 7.85           | 0.49    |
| Pacini 05       | 0.34                                             | 0.02           | 6.69           | 0.48    |
| Patel 08        | 0.30                                             | 0.07           | 1.23           | 0.09    |
| Reed 06         | 3.00                                             | 0.26           | 33.97          | 0.37    |
| Riesenman 07    | 0.25                                             | 0.05           | 1.27           | 0.09    |
| Rousseau 05     | 0.08                                             | 0.00           | 1.43           | 0.09    |
| Stone 06        | 0.47                                             | 0.19           | 1.17           | 0.10    |
| Single center   | 0.53                                             | 0.38           | 0.74           | 0.00    |
| Overall         | 0.44                                             | 0.33           | 0.59           | 0.00    |

Statistics for each study





JACC Vol. 55, No. 10, 2010 March 9, 2010:986-1001

 $l^2 = 0\%$ 

Study name

### Descending Thoracic Aorta

100

#### Paraplegia or -paresis TEVAR vs OR

| Study name                | Statistics for each study |                |                |             |
|---------------------------|---------------------------|----------------|----------------|-------------|
|                           | Odds<br>ratio             | Lower<br>limit | Upper<br>limit | p-Valu      |
| TAG 99-01                 | 0.183                     | 0.058          | 0.581          | 0.004       |
| Demetriades 08            | 0.266                     | 0.024          | 2.990          | 0.283       |
| Matsumura 08              | 0.983                     | 0.292          | 3.307          | 0.978       |
| Fairman 08                | 0.494                     | 0.261          | 0.934          | 0.030       |
| Multicenter<br>Aasland 05 | 0.436 0.323               | 0.225 0.034    | 0.844<br>3.080 | 0.014 0.326 |
| Akowuah 07                | 0.333                     | 0.012          | 9.566          | 0.521       |
| Andrassy 06               | 0.114                     | 0.006          | 2.335          | 0.159       |
| Brandt 04                 | 0.476                     | 0.040          | 5.671          | 0.557       |
| Broux 06                  | 0.407                     | 0.015          | 10.832         | 0.592       |
| Chung 08                  | 0.063                     | 0.003          | 1.151          | 0.062       |
| Cook 06                   | 0.385                     | 0.015          | 9.995          | 0.565       |
| Dick 08                   | 1.360                     | 0.185          | 9.986          | 0.762       |
| Doss 05                   | 0.871                     | 0.052          | 14.604         | 0.923       |
| Ehrlich 98                | 0.327                     | 0.017          | 6.177          | 0.456       |
| Glade 05                  | 0.299                     | 0.032          | 2.779          | 0.288       |
| Keiffer 08                | 0.113                     | 0.006          | 1.975          | 0.135       |
| Kokotsakis 07             | 0.429                     | 0.024          | 7.632          | 0.564       |
| Midgely 07                | 0.413                     | 0.015          | 11.053         | 0.598       |
| Mohan 08                  | 0.264                     | 0.010          | 7.117          | 0.428       |
| Morishita 04              | 0.189                     | 0.007          | 5.073          | 0.321       |
| Nienaber 99               | 0.168                     | 0.007          | 3.902          | 0.266       |
| Ott 04                    | 0.323                     | 0.013          | 7.847          | 0.488       |
| Pacini 05                 | 0.341                     | 0.017          | 6.687          | 0.478       |
| Patel 08                  | 0.382                     | 0.033          | 4.371          | 0.439       |
| Rousseau 05               | 0.157                     | 0.008          | 3.176          | 0.228       |
| Stone 06                  | 0.759                     | 0.264          | 2.180          | 0.608       |
| Single center<br>Overall  | 0.402<br>0.415            | 0.237<br>0.275 | 0.683<br>0.628 | 0.001       |



Odds ratio and 95% CI



**Favors TEVAR** 

### Any Evidence for the Arch?

- Smaller numbers of patients
- Heterogenity of techniques
- Different specialties involved
- Rapid technical development



### Access for Arch TEVAR





### Zone 0 – Debranching



### Zone 0 – Debranching



### Zone 0 – Debranching



### Zone 0 – Branched SG



#### Courtesy of Krassi Ivancev, UCLH London, UK







Courtesy of Krassi Ivancev, UCLH London, UK

# Zone 0 – Chimney Graft



# Zone 0 – Chimney Graft



### Zone 0 – Chimney Graft



### Zone 0 – In-Situ Fenestration





### Zone 0 – In-Situ Fenestration



### Conclusions

\*Technique under rapid development and we cannot expect evidence on its role in the near future

\*Technique depends on local organisation and team-structure

 Feasible and lifesaving option in patients unfit for surgery

